题目内容
如图,△ABC内接于⊙O,AE是∠BAC外角∠CAD的平分线,交BC延长线于点E,延长EA交⊙O于点F,连接BF,求证:FB2=FA•FE.
【答案】分析:要证FB2=FA•FE,需证FB:FA=FE:FB,需证△FAB和△FBE相似.有一公共角∠F,再证明∠FBE=∠FAB即可证明两三角形相似.
解答:证明:∵AE是∠BAC外角∠CAD的平分线,
∴∠DAE=∠CAE,又∠DAE=∠FAB,∠FBE=∠CAE,
∴∠FBE=∠FAB
,
又∵∠BFE=∠AFB
∴△FAB∽△FBE
∴FB:FA=FE:FB即FB2=FA•FE.
点评:本题主要考查了相似三角形的判定及性质.注意:在圆中证明两三角形相似时,通常找角相等的条件,比找边对应成比例容易得多.
解答:证明:∵AE是∠BAC外角∠CAD的平分线,
∴∠DAE=∠CAE,又∠DAE=∠FAB,∠FBE=∠CAE,
∴∠FBE=∠FAB
又∵∠BFE=∠AFB
∴△FAB∽△FBE
∴FB:FA=FE:FB即FB2=FA•FE.
点评:本题主要考查了相似三角形的判定及性质.注意:在圆中证明两三角形相似时,通常找角相等的条件,比找边对应成比例容易得多.
练习册系列答案
相关题目