题目内容

已知,如图E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE,四边形ABCD是平行四边形吗?请说明理由.

【答案】分析:首先根据条件证明△AFD≌△CEB,可得到AD=CB,∠DAF=∠BCE,可证出AD∥CB,根据一条对边平行且相等的四边形是平行四边形可证出结论.
解答:解:结论:四边形ABCD是平行四边形,
证明:∵DF∥BE,
∴∠AFD=∠CEB,
又∵AF=CE  DF=BE,
∴△AFD≌△CEB(SAS),
∴AD=CB,∠DAF=∠BCE,
∴AD∥CB,
∴四边形ABCD是平行四边形.
点评:此题主要考查了平行四边形的判定,以及三角形全等的判定与性质,解题的关键是根据条件证出△AFD≌△CEB.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网