题目内容
已知,在Rt△ABC中,∠C=90°,BC=12,AC=5,则cosA的值是
A.
B.
C.
D.
C
如图,⊙的半径为5,为弦,,垂足为,如果,那么的长是( )
A.4 B. 6 C. 8 D. 10
已知关于x的方程.
(1)当k取何值时,方程有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.
如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=0.4m,EF=0.2cm,测得边DF离地面的高度AC=1.5m,CD=8m,求树高.
操作与探究
我们知道:过任意一个三角形的三个顶点能作一个圆,探究过四边形四个顶点作圆的条件。
(1)分别测量下面各四边形的内角,如果过某个四边形的四个顶点能一个圆,那么其相对的两个角之间有什么关系?证明你的发现.
(2) 如果过某个四边形的四个顶点不能一个圆,那么其相对的两个角之间有上面的关系吗?试结合下面的两个图说明其中的道理.(提示:考虑)
由上面的探究,试归纳出判定过四边形的四个顶点能作一个圆的条件.
如图,抛物线和直线. 当y1>y2时,x的取值范围是
A.0<x<2
B.x<0或x>2
C.x<0或x>4
D.0<x<4
如图所示:下列正多边形都满足,在正三角形中,我们可推得:;在正方形中,可推得:;在正五边形中,可推得:,依此类推在正八边形中, ,在正边形中, .
如图,在△中,点分别在边上,∥,若,,则等于
A. B. C. D.
已知:△ABC是边长为4的等边三角形,点O在边AB上,⊙O过点B且分别与边AB,BC相交于点D,E,EF⊥AC,垂足为F.
(1)求证:直线EF是⊙O的切线;
(2)当直线DF与⊙O相切时,求⊙O的半径.