题目内容

已知三角形的三边长分别是3,4,6,它的内切圆半径为r,则它的面积是________.

r
分析:根据三角形内切圆与三角形三边关系,将三角形ABC分割为S△ABC=S△ABO+S△BOC+S△AOC,求出即可.
解答:解:如图所示:∵三角形的三边长分别是3,4,6,它的内切圆半径为r,
∴可以设AB=3,AC=4,BC=6,⊙O与三角形三边AB,AC,BC分别相切于点D,E,F,
∴DO=EO=FO=r,
∴S△ABC=S△ABO+S△BOC+S△AOC
=×AB×DO+×BC×FO+×AC×EO,
=×3×r+×4×r+×6×r,
=r(3+4+6),
=r.
故答案为:r.
点评:此题主要考查了三角形内切圆的性质以及切线的性质定理,将三角形分割为S△ABC=S△ABO+S△BOC+S△AOC是解题关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网