题目内容
(1)计算:
+
;
(2)解分式方程:
+
=
.
| 4a |
| a2-1 |
| 1+a |
| 1-a |
(2)解分式方程:
| 3 |
| x |
| 6 |
| x-1 |
| 7 |
| x2-x |
分析:(1)通分得到原式=
-
=
,然后把分子化简后进行约分即可;
(2)方程两边都乘以x(x-1)得到3(x-1)+6x=7,解得x=
,然后进行检验确定分式方程的解.
| 4a |
| (a+1)(a-1) |
| a+1 |
| a-1 |
| 4a-(a+1)2 |
| (a+1)(a-1) |
(2)方程两边都乘以x(x-1)得到3(x-1)+6x=7,解得x=
| 10 |
| 9 |
解答:解:(1)原式=
-
=
=-
=-
=-
;
(2)去分母得3(x-1)+6x=7,
解得x=
,
经检验:x=
是原方程的解,
∴x=
.
| 4a |
| (a+1)(a-1) |
| a+1 |
| a-1 |
=
| 4a-(a+1)2 |
| (a+1)(a-1) |
=-
| a2-2a+1 |
| (a+1)(a-1) |
=-
| (a-1)2 |
| (a+1)(a-1) |
=-
| a-1 |
| a+1 |
(2)去分母得3(x-1)+6x=7,
解得x=
| 10 |
| 9 |
经检验:x=
| 10 |
| 9 |
∴x=
| 10 |
| 9 |
点评:本题考查了解分式方程:先把分式方程化为整式方程,解整式方程,然后进行检验,把整式方程的解代入分式方程的分母中,若分母为零,则这个整式方程的解为分式方程的增根;若分母不为零,则这个整式方程的解为分式方程的解.也考查了分式的加减法.
练习册系列答案
相关题目