题目内容

如图所示,在平面直角坐标系中,已知点A(0,6),点B(8,0),动点P从A开始在线段AO上以每秒1个单位长度的速度向点O运动,同时动点Q从B开始在线段BA上以每秒2个单位长度的速度向点A运动,设运动的时间为t秒.
(1)求直线AB的解析式;
(2)当t为何值时,△APQ与△ABO相似?

解:(1)设直线AB的解析式为y=kx+b
由题意,得
解得
所以,直线AB的解析式为y=-x+6;

(2)由AO=6,BO=8得AB=10,
所以AP=t,AQ=10-2t,
①当∠APQ=∠AOB时,△APQ∽△AOB.
所以 =
解得t=(秒),
②当∠AQP=∠AOB时,△AQP∽△AOB.
所以 =
解得t=(秒);
分析:(1)设直线AB的解析式为y=kx+b,解得k,b即可;
(2)由AO=6,BO=8得AB=10,①当∠APQ=∠AOB时,△APQ∽△AOB利用其对应边成比例解t.②当∠AQP=∠AOB时,△AQP∽△AOB利用其对应边成比例解得t.
点评:此题主要考查相似三角形的判定与性质,待定系数法求一次函数值,解直角三角形等知识点,有一定的拔高难度,属于难题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网