题目内容


如图,在平面直角坐标系中,抛物线y=经过平移得到抛物线y=,其对称轴与两段抛物线所围成的阴影部分的面积为(  )

A.2       B.4       C.8       D.16

 


B【考点】二次函数图象与几何变换.

【专题】压轴题.

【分析】根据抛物线解析式计算出y=的顶点坐标,过点C作CA⊥y轴于点A,根据抛物线的对称性可知阴影部分的面积等于矩形ACBO的面积,然后求解即可.

【解答】解:过点C作CA⊥y,

∵抛物线y==(x2﹣4x)=(x2﹣4x+4)﹣2=(x﹣2)2﹣2,

∴顶点坐标为C(2,﹣2),

对称轴与两段抛物线所围成的阴影部分的面积为:2×2=4,

故选:B.

【点评】本题考查了二次函数的问题,根据二次函数的性质求出平移后的抛物线的对称轴的解析式,并对阴影部分的面积进行转换是解题的关键.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网