题目内容
如图,甲、乙为两座建筑物,它们之间的水平距离BC为30m,在A点测得D点的仰角∠EAD为45°,在B点测得D点的仰角∠CBD为60°,则甲建筑物的高度为___ m,乙建筑物的高度为__ m.
矩形各个内角的平分线围成一个四边形,则这个四边形一定是( )
A. 正方形 B. 菱形 C. 矩形 D. 平行四边形
如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=_____秒时,点P与点C中心对称,且对称中心在直径AB上.
如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.
(1)依题意补全图形;
(2)求∠AGE的度数(用含α的式子表示);
(3)用等式表示线段EG与EF,AF之间的数量关系,并说明理由.
关于x的一元二次方程有两个的实数根.
(1)求m的取值范围;
(2)当m取最小整数值时,求此方程的根.
如图,正方形ABCD,根据图形写出一个正确的等式:___________________________.
如图,直线m∥n,点A在直线m上,点B、C在直线n上,AB=CB,?1=70?,则∠BAC等于( )
A. 40° B. 55°
C. 70° D. 110°
如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm 至D点,则橡皮筋被拉长了( )
A. 2cm B. 3cm C. 4cm D. 5cm
已知,抛物线y=ax2+bx-2与x轴的两个交点分别为A(1,0),B(4,0),与y轴的交点为C.
(1)求出抛物线的解析式及点C的坐标;
(2)点P是在直线x=4右侧的抛物线上的一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以A,P,M为顶点的三角形与△OCB相似?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.