题目内容
如图AB∥CD,AB与DE交于点F,∠B=40°,∠D=70°,则∠E=________.
30°
分析:由两直线AB∥CD,推知内错角∠1=∠D=70°;然后根据三角形外角定理求得∠1=∠B+∠E,从而求得∠E=30°.
解答:
解:∵AB∥CD,∠D=70°,
∴∠1=∠D=70°(两直线平行,内错角相等);
又∵∠1=∠B+∠E(外角定理),
∴∠E=70°-40°=30°.
故答案是:30°.
点评:本题主要考查了平行线的性质、三角形的外角性质.求∠2的度数时,∠1的度数是连接已知条件∠B=40°与∠D=70°的纽带.
分析:由两直线AB∥CD,推知内错角∠1=∠D=70°;然后根据三角形外角定理求得∠1=∠B+∠E,从而求得∠E=30°.
解答:
∴∠1=∠D=70°(两直线平行,内错角相等);
又∵∠1=∠B+∠E(外角定理),
∴∠E=70°-40°=30°.
故答案是:30°.
点评:本题主要考查了平行线的性质、三角形的外角性质.求∠2的度数时,∠1的度数是连接已知条件∠B=40°与∠D=70°的纽带.
练习册系列答案
相关题目