题目内容
如图,已知双曲线经过斜边的中点,且与直角边相交于点.若点的坐标为(,4),则的面积为( )
A. 8 B.9 C.10 D.18
已知二次函数y=x2﹣2mx+m2+3(m为常数),下列结论正确的是( ).
A.当m=0时,二次函数图象的顶点坐标为(0,0)
B.当m<0时,二次函数图象的对称轴在y轴右侧
C.若将该函数图象沿y轴向下平移6个单位,则平移后图象与x轴两交点之间的距离为2
D.设二次函数的图象与y轴交点为A,过A作x轴的平行线,交图象于另一点B,抛物线的顶点为C,则△ABC的面积为m3
已知二次函数的图象(0≤x≤3)如图所示,则当0≤x≤3时,函数值y的范围是 .
先阅读短文,然后回答短文后面所给出的问题:
对于三个数a、b、c的平均数,最小的数都可以给出符号来表示,我们规定 表示这三个数的平均数,表示这三个数中的最小的数,表示这三个数中最大的数.例如:,,;,.
(1)请填空: ;若,则 ;
(2)若,求的取值范围;
(3)若,求的值.
现有5张正面分别标有数字0,1,2,3,4的不透明卡片,它们除数字不同外其余全部
相同。现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,则使得关于的一元二次方程有实数根,且关于的分式方程有整数解的概率为 。
如图,BC⊥AE于点C,CD∥AB,∠1=55°,则∠B等于( )
A.35° B.45° C.55° D.65°
已知抛物线y=﹣x2+x+4交x轴于点A、B,交y轴于点C,连接AC、BC.
(1)求交点A、B的坐标以及直线BC的解析式;
(2)如图1,动点P从点B出发以每秒5个单位的速度向点O运动,过点P作y轴的平行线交线段BC于点M,交抛物线于点N,过点N作NC⊥BC交BC于点K,当△MNK与△MPB的面积比为1:2时,求动点P的运动时间t的值;
(3)如图2,动点P 从点B出发以每秒5个单位的速度向点A运动,同时另一个动点Q从点A出发沿AC以相同速度向终点C运动,且P、Q同时停止,分别以PQ、BP为边在x轴上方作正方形PQEF和正方形BPGH(正方形顶点按顺时针顺序),当正方形PQEF和正方形BPGH重叠部分是一个轴对称图形时,请求出此时轴对称图形的面积.
关于x的方式方程的解是正数,则m可能是( )
A.﹣4 B.﹣5 C.﹣6 D.﹣7
方程x2﹣5x+2=0与方程x2+2x+6=0的所有实数根的和为 .