题目内容
在平面直角坐标系中,点M(﹣2,1)在( )
A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限
如图,正方形ABCD和正方形ECGF的边长分别为a和6,
(1) 写出表示阴影部分面积的代数式(结果要求化简);
(2) 求时,阴影部分的面积.
下列去括号的结果中,正确的是( )
A. ﹣3(x﹣1)=﹣3x+3 B. ﹣3(x﹣1)=﹣3x﹣1
C. ﹣3(x﹣1)=﹣3x﹣3 D. ﹣3(x﹣1)=﹣3x+1
如图,正比例函数y1=k1x和一次函数y2=k2x+b的图象相交于点A(2,1),当x<2时,y1____y2.(填“>”或“<”)
81的平方根是 .
初一(1)班的篮球拉拉队同学,为了在明天的比赛中给同学加油助威,提前给每人制作了一面同一规格的三角形彩旗.小明放学回家后,发现自己的彩旗破损了一角,他想用彩旗重新制作了一面彩旗,请你帮助小明,用直尺与圆规在彩纸上作出一个与破损前完全一样的三角形.
如图,已知AB∥CD∥EF,∠B=60°,∠D=10°,EG平分∠BED,则∠GEF=_____°.
先阅读下列材料:
我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.
(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.
如:ax+by+bx+ay=(ax+bx)+(ay+by)
=x(a+b)+y(a+b)
=(a+b)(x+y)
2xy+y2﹣1+x2
=x2+2xy+y2﹣1
=(x+y)2﹣1
=(x+y+1)(x+y﹣1)
(2)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如:
x2+2x﹣3
=x2+2x+1﹣4
=(x+1)2﹣22
=(x+1+2)(x+1﹣2)
=(x+3)(x﹣1)
请你仿照以上方法,探索并解决下列问题:
(1)分解因式:
(2)分解因式:x2﹣6x﹣7;
(3)分解因式:
因式分【解析】 = .