题目内容
⊙O的半径为5,弦BC=8,点A是⊙O上一点,且AB=AC,直线AO与BC交于点D,则AD的长为 .
在△ABC中,a,b,c分别为∠A,∠B,∠C所对的边,我们称关于x的一元二次方程为“△ABC的☆方程”.根据规定解答下列问题:
(1)“△ABC的☆方程” 的根的情况是______(填序号):
①有两个相等的实数根;②有两个不相等的实数根;③没有实数根;
(2)如图,AD为⊙O的直径,BC为弦, BC⊥AD于E,∠DBC=30°,求“△ABC的☆方程” 的解;
(3)若x=是“△ABC的☆方程” 的一个根,其中a,b,c均为整数,且,求方程的另一个根.
将二次函数y=x2+4x+3的图象向右平移3个单位,再向下平移2个单位,所得图象的函数解析式为 .
若二次根式有意义,则x的取值范围是( )
A.x=2 B.x≠2 C.x≤2 D.x≥2
从A、B、C、D四人中随机选择两人参加乒乓球比赛,请用树状图或列表法求下列事件发生的概率.
(1)A参加比赛;
(2)A、B都参加比赛.
学校篮球集训队11名队员进行定点投篮训练,11名队员在1分钟内投进篮框的球数和人数如下表:
球数/个
6
7
8
9
10
12
人数
1
4
3
则11名队员投进篮框的球数的中位数是 个.
书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书的概率是( )
A. B. C. D.
某菜农搭建了一个横截面为抛物线的大棚,尺寸如图,若菜农身高为1.8m,他在不弯腰的情况下,在棚内的横向活动范围是 m.
如图,在平面直角坐标系中,己知点O(0,0),A(5,0),B(4,4).
(1)求过O、B、A三点的抛物线的解析式.
(2)在第一象限的抛物线上存在点M,使以O、A、B、M为顶点的四边形面积最大,求点M的坐标.
(3)作直线x=m交抛物线于点P,交线段OB于点Q,当△PQB为等腰三角形时,求m的值.