题目内容
下列几何体的左视图为长方形的是( )
A. B. C. D.
如图,AB是圆⊙O的直径,BC是⊙O的切线,连结AC交⊙O于点D,E为上一点,连结AE、BE,BE交AC于点F,且AE2=EF•EB
(1)求证:CB=CF.
(2)若点E到弦AD的距离为1,cos∠C=,求⊙O的半径.
若u、v满足v= ,则u2﹣uv+v2=__.
下列图形都是由完全相同的小梯形按一定规律组成的,如果第一个图形的周长为5,那么第2017个图形的周长是_____.
如图,∠BCD=90°,AB∥DE,则α与β一定满足的等式是( )
A. α+β=180° B. α+β=90° C. β=3α D. α﹣β=90°
如图,在平面直角坐标系中,直线y=﹣3x﹣3与x轴交于点A,与y轴交于点C.抛物线y=x2+bx+c经过A,C两点,且与x轴交于另一点B(点B在点A右侧).
(1)求抛物线的解析式及点B坐标;
(2)若点M是线段BC上一动点,过点M的直线EF平行y轴交x轴于点F,交抛物线于点E.求ME长的最大值;
(3)试探究当ME取最大值时,在x轴下方抛物线上是否存在点P,使以M,F,B,P为顶点的四边形是平行四边形?若存在,请求出点P的坐标;若不存在,试说明理由.
列方程解应用题:
某城市为了治理污水,需要铺设一条全长为3000米的污水排放管道.为使工程提前10天完成,在保证质量的前提下,必须把工作效率提高25%.问原计划每天铺设管道多少米?
甲、乙两人分别站在相距6米的A、B两点练习打羽毛球,已知羽毛球飞行的路线为抛物线的一部分,甲在离地面1米的C处发出一球,乙在离地面1.5米的D处成功击球,球飞行过程中的最高点H与甲的水平距离AE为4米,现以A为原点,直线AB为x轴,建立平面直角坐标系(如图所示).求羽毛球飞行的路线所在的抛物线的表达式及飞行的最高高度.
如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A. 70° B. 80° C. 84° D. 86°