题目内容
(5分)先化简,再求值:,其中.
如图,有一锐角为30°的直角三角板ABC的斜边AB与量角器的直径重合,点D对应54°,则∠BCD的度数为( )
A.27° B.54° C.63° D.36°
(本题满分8分)有关部门从甲、乙两个城市所有的自动售货机中分别随机抽取了16台,记录下某一天各自的销售情况(单位:元):
甲:18, 8,10,43, 5,30,10,22, 6,27,25,58,14,18,30,41
乙:22,31,32,42,20,27,48,23,38,43,12,34,18,10,34,23
小强用如图所示的方法表示甲城市16台自动售货机的销售情况.
(1)请你仿照小强的方法将乙城市16台自动售货机的销售情况表示出来;
(2)用不等号填空: ; ;
请说出此种表示方法的优点.
将二次函数的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A. B.
C. D.
(7分)在同一平面内,△ABC和△ABD如图①放置,其中AB=BD.小明做了如下操作:将△ABC绕着边AC的中点旋转180°得到△CEA,将△ABD绕着边AD的中点旋转180°得到△DFA,如图②,请完成下列问题:
(1)试猜想四边形ABDF是什么特殊四边形,并说明理由;
(2)连接EF,CD,如图③,求证:四边形CDFE是平行四边形.
拒绝“餐桌浪费”刻不容缓,据统计全国每年浪费食物总量约为50000000000千克,这个数据用科学记数法表示为 .
一次函数的图象与坐标轴交点的距离是( )
A. B. C.2 D.4
如图,一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O,A1;
将C1绕点A1旋转180°得C2,交x轴于点A2;
将C2绕点A2旋转180°得C3,交x轴于点A3;
…
如此进行下去,直至得C13.若P(37,m)在第13段抛物线C13上,则m=_______________.
(本题10分)如图,,⊙是Rt△的内切圆,分别切于点,连接.的延长线交于点,.
(1)求证:四边形为正方形;
(2)求⊙的半径; (3)求的长.