题目内容
如图,四个几何体中,它们各自的三个视图(主视图、左视图和俯视图)有两个相同,而另外一个不同的几何体是 .(填写序号)
③④;
如图,,于点,图中共有___个直角,图中线段____的长表示点到的距离,线段____的长表示点到的距离.
分解因式:a 2-9= .
如图,在△ABC中,AB=AC=4,BC=8.⊙A的半径为2,动点P从点B出发沿BC方向以每秒1个单位的速度向点C运动,以点P为圆心,以PB为半径作⊙P,设点P运动的时间为t秒.
(1)当⊙P与直线AC相切时,求t的值;
(2)当⊙P与⊙A相切时,求t的值;
(3) 延长BA交⊙A于点D,连接AP交⊙A于点E,连接DE并延长交BC于点F.当△ABP与△FBD相似时,求t的值.
如图,已知直角坐标系中四点A(﹣2,4)、B(﹣2,0)、C(2,﹣3)、D(2,0).若点P在x轴上,且PA、PB、AB所围成的三角形与PC、PD、CD所围成的三角形相似,则所有符合上述条件的点P的个数是( )
A.
1个
B.
2个
C.
3个
D.
4个
如图,在△BDE中,∠BDE=90 °,BD=4,点D的坐标是(5,0),∠BDO=15 °,将△BDE旋转到△ABC的位置,点C在BD上,则旋转中心的坐标为 .
如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在反比例函数y=(x>0)的图像上,点D的坐标为(4,3).
(1)求k的值;
(2)若将菱形ABCD向右平移,使菱形的某个顶点落在反比例函数y=(x>0)的图像上,求菱形ABCD平移的距离.
如图,在△ABC中,AB=AC,∠A=36°,AB的垂直平分线交AC点E,垂足为点D,连接BE,则∠EBC的度数为 °.
在平面直角坐标系中,O为坐标原点,一次函数y=ax+b的图象与二次函数
y=ax2+bx的图象交于点A、B.其中a、b均为非零实数.
(1)当a=b=1时,求AB的长;
(2)当a>0时,请用含a、b的代数式表示△AOB的面积;
(3)当点A的横坐标小于点B的横坐标时,过点B作x轴的垂线,垂足为B′.若二次函数y=ax2+bx的图象的顶点在反比例函数y=的图象上,请用含a的代数式表示△BB′A的面积.