题目内容
【题目】如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )
![]()
A.AB=DC,AD=BCB.AB∥DC,AD∥BC
C.AB∥DC,AD=BCD.OA=OC,OB=OD
【答案】C
【解析】
根据平行四边形的判定定理进行判断即可.
解:A.根据“两组对边分别相等的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;
B.根据“两组对边分别平行的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意;
C.“一组对边平行,另一组对边相等”是四边形也可能是等腰梯形,故本选项符合题意;
D.根据“对角线互相平分的四边形是平行四边形”可判定四边形ABCD为平行四边形,故此选项不符合题意.
故选:C.
练习册系列答案
相关题目
【题目】代数式ax2+bx+c(a≠0,a,b,c是常数)中,x与ax2+bx+c的对应值如下表:
x | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 |
ax2+bx+c | ﹣2 | ﹣ | 1 |
| 2 |
| 1 | ﹣ | ﹣2 |
请判断一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1 , x2的取值范围是下列选项中的( )
A.﹣
<x1<0,
<x2<2
B.﹣1<x1<﹣
,2<x2< ![]()
C.﹣
<x1<0,2<x2< ![]()
D.﹣1<x1<﹣
,
<x2<2