题目内容
下列算式中,运算结果为负数的是( )
A. ﹣(﹣2) B. |﹣2| C. (﹣2)3 D. (﹣2)2
已知关于x的一元二次方程x2﹣4x+2k=0
(1)若方程有实数根,求k的取值范围.
(2)如果k是满足条件的最大的整数,且方程x2﹣4x+2k=0的根是一元二次方程x2﹣2mx+3m﹣1=0的一个根,求m的值及这个方程的另一个根.
弦是圆内接正三角形的边,弦是同圆内接正六边形的一边,则的度数为( )
A. B. C. 或 D. 或
在数,,,,中任选两个数相乘,其中最大的积是________.
在,,,,,这几个有理数中,负数的个数是( )
A. B. C. D.
综合与探究:
如图1,抛物线y=﹣x2+x+与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣).
(1)求A、B两点的坐标及直线l的表达式;
(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t(t>0)秒.探究下列问题:
①请直接写出A′的坐标(用含字母t的式子表示);
②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由;
(3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.
(1)计算:2﹣2﹣+(1﹣)0+2sin60°.
(2)先化简,再求值:()÷,其中x=﹣2018.
已知:如图,在中,,,垂足为点,是外角的平分线,,垂足为点,连接交于点.
求证:四边形为矩形;
当满足什么条件时,四边形是一个正方形?并给出证明.
在的条件下,若,求正方形周长.
用配方法解方程,配方后得( )