题目内容
如图所示,已知∠1=∠2,下列结论正确的是( )
A. AB∥DC B. AD∥BC C. AB=CB D. AD=CD
小明为了测量楼房AB的高度,他从楼底的B处沿着斜坡向上行走20m,到达坡顶D处.已知斜坡的坡角为15°.(以下计算结果精确到0.1m)
(1)求小明此时与地面的垂直距离CD的值;
(2)小明的身高ED是1.6m,他站在坡顶看楼顶A处的仰角为45°,求楼房AB的高度.(sin15°≈0.2588,cos15°≈0.9659 ,tan≈.0.2677 )
如图,在平面直角坐标系中,通过观察一次函数的图象,我们可以得到方
程的解为,这一求解过程主要体现的数学思想是( )
A. 数形结合 B. 分类讨论 C. 类比 D. 公理化
我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形拼成如图所示的正方形,并用它证明了勾股定理,这个图被称为“弦图”.若直角三角形的斜边长为c,两直角边长分别为a、b,当a=3,c=5时,图中小正方形(空白部分)面积为_____.
如图所示,点A、B、C在⊙O上,若∠BAC=45°,OB=4,则图中阴影部分的面积为( )
A. 4π﹣8 B. 2π﹣4 C. π﹣2 D. 4π﹣4
如图,在菱形ABCD中,AC和BD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.
(1)求证:AE=CF;
(2)若AB=2,点E是AB中点,求EF的长.
如图,∠AOB=10°,点P在OB上.以点P为圆心,OP为半径画弧,交OA于点P1(点P1与点O不重合),连接PP1;再以点P1为圆心,OP为半径画弧,交OB于点P2(点P2与点P不重合),连接P1 P2;再以点P2为圆心,OP为半径画弧,交OA于点P3(点P3与点P1不重合),连接P2 P3;……
请按照上面的要求继续操作并探究:
∠P3 P2 P4=_____°;按照上面的要求一直画下去,得到点Pn,若之后就不能再画出符合要求点Pn+1了,则n=_____.
已知:如图,?ABC内接于⊙O,AB为直径,∠CBA的平分线交AC于点F,交⊙O于点D,DE⊥AB于点E,且交AC于点P,连结AD.
1.求证:∠DAC =∠DBA;
2.求证:是线段AF的中点
3.若⊙O 的半径为5,AF = ,求tan∠ABF的值.
分解因式:mn2-2mn+m=_________.