题目内容

【题目】如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.

⑴求抛物线的解析式及点C的坐标;

⑵求证:△ABC是直角三角形;

⑶若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.

【答案】(1)y=﹣x2+2x;C(-1,-3);(2)证明过程略;(3)(,0)或(,0)或(﹣1,0)或(5,0).

【解析】

(1)可设顶点式,把原点坐标代入可求得抛物线解析式,联立直线与抛物线解析式,可求得C点坐标;
(2)分别过A、C两点作x轴的垂线,交x轴于点D、E两点,结合A、B、C三点的坐标可求得∠ABO=∠CBO=45°,可证得结论;
(3)设出N点坐标,可表示出M点坐标,从而可表示出MN、ON的长度,当△MON和△ABC相似时,利用三角形相似的性质可得,可求得N点的坐标.

解:(1)∵顶点坐标为(1,1),
∴设抛物线解析式为y=a(x-1)2+1,
又抛物线过原点,
∴0=a(0-1)2+1,解得a=-1,
∴抛物线解析式为y=-(x-1)2+1,
y=-x2+2x,
联立抛物线和直线解析式可得 ,

解得 ,

∴B(2,0),C(-1,-3);
(2)如图,分别过A、C两点作x轴的垂线,交x轴于点D、E两点,

AD=OD=BD=1,BE=OB+OE=2+1=3,EC=3,
∴∠ABO=∠CBO=45°,即∠ABC=90°,
∴△ABC是直角三角形;
(3)假设存在满足条件的点N,设N(x,0),则M(x,-x2+2x),
∴ON=|x|,MN=|-x2+2x|,
由(2)在Rt△ABDRt△CEB中,可分别求得AB= ,BC=3
∵MN⊥x轴于点N
∴∠ABC=∠MNO=90°,
∴当△ABC和△MNO相似时有

则有 ,即|x||-x+2|=|x|,

∵当x=0M、O、N不能构成三角形,

∴x≠0,

∴|-x+2|=,即-x+2=± ,解得x= x=

此时N点坐标为(,0)或(,0);

②当时,则有,即|x||-x+2|=3|x|,

∴|-x+2|=3,即-x+2=±3,解得x=5x=-1,
此时N点坐标为(-1,0)或(5,0),

综上可知存在满足条件的N点,其坐标为( ,0)或( ,0)或(-1,0)或(5,0).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网