题目内容
已知△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,则ABC与△DEF的面积之比为 .
【答案】分析:先根据相似三角形的性质求出其相似比,再根据面积的比等于相似比的平方进行解答即可.
解答:解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,
∴三角形的相似比是3:1,
∴△ABC与△DEF的面积之比为9:1.
故答案为:9:1.
点评:本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.
解答:解:∵△ABC∽△DEF,△ABC的周长为3,△DEF的周长为1,
∴三角形的相似比是3:1,
∴△ABC与△DEF的面积之比为9:1.
故答案为:9:1.
点评:本题考查的是相似三角形的性质,即相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.
练习册系列答案
相关题目