题目内容


如图,在扇形AOB中,∠AOB=90°,半径OA=6,将扇形AOB沿过点B的直线折叠,点O恰好落在弧AB上点D处,折痕交OA于点C,整个阴影部分的面积      


 9π12 

 

【考点】翻折变换(折叠问题);扇形面积的计算.

【分析】首先连接OD,由折叠的性质,可得CD=CO,BD=BO,∠DBC=∠OBC,则可得△OBD是等边三角形,继而求得OC的长,即可求得△OBC与△BCD的面积,又在扇形OAB中,∠AOB=90°,半径OA=6,即可求得扇形OAB的面积,继而求得阴影部分面积.

【解答】解:连接OD.

根据折叠的性质,CD=CO,BD=BO,∠DBC=∠OBC,

∴OB=OD=BD,

即△OBD是等边三角形,

∴∠DBO=60°,

∴∠CBO=∠DBO=30°,

∵∠AOB=90°,

∴OC=OB•tan∠CBO=6×=2

∴SBDC=SOBC=×OB×OC=×6×2=6,S扇形AOB=π×62=9π,

∴整个阴影部分的面积为:S扇形AOB﹣SBDC﹣SOBC=9π﹣6﹣6=9π﹣12

故答案为:9π﹣12

【点评】此题考查了折叠的性质、扇形面积公式以及直角三角形的性质.此题难度适中,注意数形结合思想的应用,注意辅助线的作法.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网