题目内容
若x1、x2是一元二次方程2x2-3x-1=0的两个根,求下列代数式的值.
(1)
+
(2)x12+x22
(3)(x1-x2)2
(4)
+
(5)(x1-2)(x2-2)
(6)(x1+
)(x2+
)
(1)
| 1 |
| x1 |
| 1 |
| x2 |
(2)x12+x22
(3)(x1-x2)2
(4)
| x2 |
| x1 |
| x1 |
| x2 |
(5)(x1-2)(x2-2)
(6)(x1+
| 1 |
| x2 |
| 1 |
| x1 |
分析:利用一元二次方程根与系数的关系得到x1+x2和x1x2的值,然后把它们的值代入代数式可以求出代数式的值.
解答:解:∵x1,x2是方程2x2-3x-1=0的两个根,
∴x1+x2=
,x1x2=-
.
(1)
+
=
=
=-3;
(2)x12+x22=(x1+x2)2-2x1x2=(
)2-2×(-
)=
;
(3)(x1-x2)2=(x1+x2)2-4x1x2=(
)2-4×(-
)=
;
(4)
+
=
=
=-
;
(5)(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-
-2×
+4=
;
(6)(x1+
)(x2+
)=x1x2+2+
=-
+2+
=-
.
∴x1+x2=
| 3 |
| 2 |
| 1 |
| 2 |
(1)
| 1 |
| x1 |
| 1 |
| x2 |
| x1+x2 |
| x1x2 |
| ||
-
|
(2)x12+x22=(x1+x2)2-2x1x2=(
| 3 |
| 2 |
| 1 |
| 2 |
| 13 |
| 4 |
(3)(x1-x2)2=(x1+x2)2-4x1x2=(
| 3 |
| 2 |
| 1 |
| 2 |
| 17 |
| 4 |
(4)
| x2 |
| x1 |
| x1 |
| x2 |
| ||||
| x1x2 |
| ||
-
|
| 13 |
| 2 |
(5)(x1-2)(x2-2)=x1x2-2(x1+x2)+4=-
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
(6)(x1+
| 1 |
| x2 |
| 1 |
| x1 |
| 1 |
| x1x2 |
| 1 |
| 2 |
| 1 | ||
-
|
| 1 |
| 2 |
点评:本题考查的是一元二次方程的根与系数的关系,利用根与系数的关系求出两根的和与两根的积,然后把两根的和与两根的积代入代数式求出代数式的值.
练习册系列答案
相关题目