题目内容
如图所示,∠DAC=∠ADB,∠BAC=∠CDB.求证:△ABD≌△DCA.
某商店销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元.
(1)求每台A型电脑和B型电脑的销售利润;
(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.
①求y关于x的函数关系式;
②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?
(3)实际进货时,厂家对A型电脑出厂价下调m(0<m<100)元,且限定商店最多购进A型电脑70台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.
如图,在平面直角坐标系中,点A(2,m)在第一象限. 若点A关于x轴的对称点B在直线y= -x+1上,则m的值为( )
A. -1 B. 1 C. 2 D. 3
如图,DE⊥AB于E,DF⊥AC于F,若BD=CD,∠ABD与∠C互补.
(1)求证:AD平分∠BAC;(2)若AB=5,AC=9,则AE=_________.
如图,D为Rt△ABC中斜边BC的中点,过D作BC的垂线,交AC于E,且AE=DE,若BC=12cm,则AB的长为______cm.
如图,点B、E在线段CD上,若∠C=∠D,则添加下列条件,不一定能使△ABC≌△EFD的是( )
A. BC=FD,AC=ED B. ∠A=∠DEF,AC=ED
C. AC=ED,AB=EF D. ∠ABC=∠EFD,BC=FD
若方程2(x﹣1)=3x+1与方程mx=x﹣1的解相同,则m的值为______.
一个三角形的两边长为3和8,第三边长为奇数,则第三边长为( )
A. 5或7 B. 7或9 C. 7 D. 9