题目内容
若正比例函数y=kx的图象经过点(-2,6),则k的值为( )
A. -3 B. 3 C. D.
已知关于的一元二次方程有两个不相等的实数根,则的取之范围为( )
A. B. C. D.
已知抛物线y=(x-m)2-(x-m),其中m是常数.
(1)求证:不论m为何值,该抛物线与x轴一定有两个公共点;
(2)若该抛物线的对称轴为直线x=.
①求该抛物线的函数表达式;
②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.
如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,当最大时,点C的坐标是________.
某商店售货时,在进价基础上加一定利润,其数量x与售价y如下表所示,则售价y与数量x的函数关系式为( )
A. y=8+0.4x B. y=8+0.4 C. y=8.4x D. y=8.4x+0.4
如图所示,在△ABC中,D为BC的中点,DE⊥BC交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC延长线于G,求证:BF=CG.
如图,AB=AC,要使△ABE≌△ACD,应添加的条件是_______________.(添加一个条件即可).
已知关于x的方程x2-(k+2)x+2k=0.
(1)小明同学说:“无论k取何实数,方程总有实数根。”你认为他说的有道理吗?为什么?
(2)若等腰三角形的一边长a=1,另两边长b、c恰好是这个方程的两个根,求△ABC的周长。
(14分)如图,已知抛物线()与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段PA绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.