题目内容
小明想利用太阳光测量楼高.他带着皮尺来到一栋楼下,发现对面墙上有这栋楼的影子,针对这种情况,他设计了一种测量方案,具体测量情况如下:如示意图,小明边移动边观察,发现站到点E处时,可以使自己落在墙上的影子与这栋楼落在墙上的影子重叠,且高度恰好相同.此时,测得小明落在墙上的影子高度CD=1.2m,CE=0.8m,CA=30m(点A、E、C在同一直线上).
已知小明的身高是EF=1.7m,请你帮小明求出楼高AB(结果精确到0.1m).
![]()
解:过点D作DG⊥AB,分别交AB、EF于点G、H,
则EH=AG=CD=1.2,DH=CE=0.8,DG=CA=30,
∵EF∥AB,
∴ ,
由题意,知FH=EF-EH=1.7-1.2=0.5,
∴ ,解得,BG=18.75,
∴AB=BG+AG=18.75+1.2=19.95≈20.0.
∴楼高AB约为20.0米.点评:本题只要是把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程求解即可,体现了转化的思想.
解析:略
练习册系列答案
相关题目