题目内容

如图,在正方形ABCD中,对角线AC、BD交于点D,CE平分∠ACD,分别交AD、BD于E、G,EF∥AC交CD于F,连接OE下列结论:①EF=AE,②∠AOE=∠AEO,数学公式,④S△ACE=2S△DCE数学公式.其中正确的是


  1. A.
    ①③⑤
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ②③⑤
A
分析:正方形的四个角是直角,对角线垂直相等且平分每一组对角,以及对应线段成比例,勾股定理知识的应用.
解答:∵CE平分∠ACD,EF∥AC,
∴△CFE是等腰三角形,
∴CF=EF,
∵CF=AE,
∴EF=AE.(故①正确).
∵EF≠AO,
∴AE≠AO.(故②错误).

作CA的垂线MA和CE的延长线交于M点,
∵GO=MA,MA=AE,
∴GO=AE,(故③正确).

设GO=x,
∵GO=AE=EF,
∴EF=AE=2x,
∴DN=NE=EF=x,
∴DE=x,
∵EF∥AC,
=
∴AC=2(+1)x,
∴OD=OA=(+1)x,
∴DG=DO-OG=x,
∵AB=DA=DE+AE=x+2x,
∴AB=(+1)DG.(故⑤正确).
=
∴S△ACE=S△DCE
(故④错误).
故正确的为①③⑤.
故选A.
点评:本题考查了正方形的性质,平行线的性质以及勾股定理的知识点.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网