题目内容
(1)如图①所示,以△ABC的边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,试判断△ABC与△AEG面积之间的关系,并说明理由。
① ②
(2)园林小路,曲径通幽,如图②所示,小路由白色的正方形大理石和黑色的三角形大理石铺成,已知中间的所有正方形的面积之和是a平方米,内圈的所有三角形的面积之和是6平方米,这条小路一共占地多少平方米?
解析:(1)△ABC与△AEG面积相等,
过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,
则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,△ACM≌△AGN,
∴CM=GN,

∴S△ABC=S△AEC;

(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,
∴这条小路的面积为(a+2b)平方米。
过点C作CM⊥AB于M,过点G作GN⊥EA交EA延长线于N,
则∠AMC=∠ANG=90°,
∵四边形ABDE和四边形ACFG都是正方形,
∴∠BAE=∠CAG=90°,AB=AE,AC=AG,
∴∠BAC+∠EAG=180°,
∵∠EAG+∠GAN=180°,
∴∠BAC=∠GAN,△ACM≌△AGN,
∴CM=GN,
∴S△ABC=S△AEC;
(2)由(1)知外圈的所有三角形的面积之和等于内圈的所有三角形的面积之和,
∴这条小路的面积为(a+2b)平方米。
练习册系列答案
相关题目