题目内容
下表是某校乐团的年龄分布,其中一个数据被遮盖了,下面对于中位数的说法正确的是( )
A. 中位数是14 B. 中位数可能是14.5
C. 中位数是15或15.5 D. 中位数可能是16
如图,在平面直角坐标系中,顶点为(4,?1)的抛物线交y轴于A点,交x轴于B,C两点(点B在点C的左侧),已知A点坐标为(0,3).
(1)求此抛物线的解析式;
(2)已知点P是抛物线上的一个动点,且位于A,C两点之间,问:当点P运动到什么位置时,△PAC的面积最大?并求出此时P点的坐标和△PAC的最大面积;
(3)过点B作线段AB的垂线交抛物线于点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与有怎样的位置关系,并给出证明.
如图在梯形ABCD中,AD∥BC,AD⊥CD,BC=CD=2AD,E是CD上一点,∠ABE=45°,则tan∠AEB的值等于( )
A. 3 B. 2 C. D.
如图,⊙O的半径为2,弦BC=2,点A是优弧BC上一动点(不包括端点),△ABC的高BD、CE相交于点F,连结ED.下列四个结论:
①∠A始终为60°;
②当∠ABC=45°时,AE=EF;
③当△ABC为锐角三角形时,ED=;
④线段ED的垂直平分线必平分弦BC.
其中正确的结论是_____.(把你认为正确结论的序号都填上)
二次函数y=﹣x2+mx的图象如图,对称轴为直线x=2,若关于x的一元二次方程﹣x2+mx﹣t=0(t为实数)在1<x<5的范围内有解,则t的取值范围是( )
A. t>﹣5 B. ﹣5<t<3 C. 3<t≤4 D. ﹣5<t≤4
如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
解方程组: .
在圆O中,AO、BO是圆O的半径,点C在劣弧上,,,,联结AB.
如图1,求证:AB平分;
点M在弦AC的延长线上,联结BM,如果是直角三角形,请你在如图2中画出点M的位置并求CM的长;
如图3,点D在弦AC上,与点A不重合,联结OD与弦AB交于点E,设点D与点C的距离为x,的面积为y,求y与x的函数关系式,并写出自变量x的取值范围.
为了解某市参加中考的25000名学生的身高情况,抽查了其中1200名学生的身高进行统计分析.则总体是_____;样本容量是_____.