题目内容
【题目】问题情景:一节数学课后,老师布置了一道练习题:
如图1,已知Rt△ABC中,AC=BC,∠ABC=90°,CD⊥AB于点D,点E,F分别在AD和BC上,∠1=∠2,FG⊥AB于点G,求证:△CDE≌△EGF
![]()
(1)阅读理解,完成解答:本题证明的思路可以用下列框图表示:
![]()
根据上述思路,请你完整地写出这道练习题的证明过程;
(2)特殊位置,证明结论:如图2,若CE平分∠ACD,其余条件不变,判断AE和BF的数量关系,并说明理由;
(3)知识迁移.探究发现:如图3,已知在Rt△ABC中,AC=BC,∠ACB=90°,CD⊥AB于点D,若点E是DB的中点,点F在直线CB上,且EC=EF,请直接写出BF与AE的数量关系.(不必写解答过程)
【答案】(1)见解析;(2)AE=BF;理由见解析;(3)AE=
BF.
【解析】
(1)先证明CE=EF,利用AAS定理证明△CDE≌△EGF(AAS)即可;
(2)先证∠ACE=∠2,再证明△ACE≌△BEF(AAS),即可得证AE=BF;
(3)作EH⊥BC与H,设DE=x,求出AE=3x,再证出BF=
x,即可得出结论.
(1)证明:∵AC=BC,∠ACB=90°,
∴∠A=∠B=45°,
∵CD⊥AB,
∴∠CDB=90°,
∴∠DCB=45°,
∵∠ECF=∠DCB+∠1=45°+∠1,∠EFC=∠B+∠2=45°+∠2,∠1=∠2,
∴∠ECF=∠EFC,
∴CE=EF,
∵CD⊥AB,FG⊥AB,
∴∠CDE=∠EGF=90°,
在△CDE和△EGF中,
,
∴△CDE≌△EGF(AAS);
(2)证明:由(1)得:CE=EF,∠A=∠B,
∵CE平分∠ACD,
∴∠ACE=∠1,
∵∠1=∠2,
∴∠ACE=∠2,
在△ACE和△BEF中,
,
∴△ACE≌△BEF(AAS),
∴AE=BF;
(3)解:AE=
BF,作EH⊥BC与H,如图3所示:
设DE=x,根据题意得:BE=DE=x,AD=BD=2x,CD=AD=2x,AE=3x,
根据勾股定理得:BC=AC=2
x,
∵∠ABC=45°,EH⊥BC,
∴BH=
x,
∴CH=BC﹣BH=
x,
∵EC=EF,
∴FH=CH=
x,
∴BF=
x﹣
x=
x,
∴
=
=
,
∴AE=
BF.
![]()
【题目】某学校初二和初三两个年级各有600名同学,为了科普卫生防疫知识,学校组织了一次在线知识竞赛,小宇分别从初二、初三两个年级随机抽取了40名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.
.初二、初三年级学生知识竞赛成绩不完整的频数分布直方图如下(数据分成5组:
,
,
,
,
):
![]()
.初二年级学生知识竞赛成绩在
这一组的数据如下:
80 80 81 83 83 84 84 85 86 87 88 89 89
.初二、初三学生知识竞赛成绩的平均数、中位数、方差如下:
平均数 | 中位数 | 方差 | |
初二年级 | 80.8 |
| 96.9 |
初三年级 | 80.6 | 86 | 153.3 |
根据以上信息,回答下列问题:
(1)补全上面的知识竞赛成绩频数分布直方图;
(2)写出表中
的值;
(3)
同学看到上述的信息后,说自己的成绩能在本年级排在前40%,
同学看到
同学的成绩后说:“很遗憾,你的成绩在我们年级进不了前50%”.请判断
同学是________(填“初二”或“初三”)年级的学,你判断的理由是________.
(4)若成绩在85分及以上为优秀,请估计初二年级竞赛成绩优秀的人数为____.