题目内容
【题目】如图,△ABC、△CDE均为等边三角形,连接BD、AE交于点O,BC与AE交于于点P.
![]()
(1)求证:△ACE ≌ △BCD.
(2)求∠AOB的度数.
(3)连接OC,求证:OC平分∠AOD
【答案】(1)证明见解析;(2)
;(3)证明见解析.
【解析】
(1)利用等边三角形的性质证明
;
(2)由
得到∠CBD=∠CAE.再利用三角形内角和等于180°,由△APC和△BPO中有内角互为对顶角进而得出∠BOA=∠ACP=60°.
(3)过C点作CG⊥AE,CH⊥BD,由三角形全等可得其对应高相等.再根据到角两边距离相等的点在角平分线即可得出结论.
(1)证明:
与
都是等边三角形,
,
,
,
∴
,
即
.
在
和
中,
,
(SAS).
(2)
.
∴∠CBD=∠CAE,
∵∠BPO =∠APC,
又∵∠CBD+∠BPO+∠BOP=∠CAE+∠APC+∠ACP=180°.
∴∠BOP=∠ACP=60°,即∠AOB=60°.
(3)如图,过C点作CG⊥AE,CH⊥BD,
![]()
,
∴
,AE=BD,
∴
,
∴CG=CH,
又∵CG⊥AE,CH⊥BD,
∴OC是∠AOD的角平分线,即OC平分∠AOD.
【题目】农经公司以30元/千克的价格收购一批农产品进行销售,为了得到日销售量p(千克)与销售价格x(元/千克)之间的关系,经过市场调查获得部分数据如下表:
销售价格x(元/千克) | 30 | 35 | 40 | 45 | 50 |
日销售量p(千克) | 600 | 450 | 300 | 150 | 0 |
(1)请你根据表中的数据,用所学过的一次函数、二次函数、反比例函数的知识确定p与x之间的函数表达式;
(2)农经公司应该如何确定这批农产品的销售价格,才能使日销售利润最大?
(3)若农经公司每销售1千克这种农产品需支出a元(a>0)的相关费用,当40≤x≤45时,农经公司的日获利的最大值为2430元,求a的值.(日获利=日销售利润﹣日支出费用)