题目内容
图1和图2中,优弧
所在⊙O的半径为2,AB=2
.点P为优弧
上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.
(1)点O到弦AB的距离是 ,当BP经过点O时,∠ABA′= °;
(2)当BA′与⊙O相切时,如图2,求折痕的长:
(3)若线段BA′与优弧
只有一个公共点B,设∠ABP=α.确定α的取值范围.
![]()
解:(1)①过点O作OH⊥AB,垂足为H,连接OB,如图1①所示.
∵OH⊥AB,AB=2
,
∴AH=BH=
.
∵OB=2,
∴OH=1.
∴点O到AB的距离为1.
②当BP经过点O时,如图1②所示.
∵OH=1,OB=2,OH⊥AB,
∴sin∠OBH=
=
.
∴∠OBH=30°.
由折叠可得:∠A′BP=∠ABP=30°.
∴∠ABA′=60°.
故答案为:1、60.
(2)过点O作OG⊥BP,垂足为G,如图2所示.
∵BA′与⊙O相切,
∴OB⊥A′B.
∴∠OBA′=90°.
∵∠OBH=30°,
∴∠ABA′=120°.
∴∠A′BP=∠ABP=60°.
∴∠OBP=30°.
∴OG=
OB=1.
∴BG=
.
∵OG⊥BP,
∴BG=PG=
.
∴BP=2
.
∴折痕的长为2
.
(3)∵点P,A不重合,∴α>0°,
由(1)得,当α增大到30°时,点A′在
上,
∴当0°<α<30°时,点A′在⊙O内,线段BA′与
只有一个公共点B.
由(2)知,α增大到60°时,BA′与⊙O相切,即线段BA′与
只有一个公共点B.
当α继续增大时,点P逐渐靠近B点,但点P,B不重合,
∴∠OBP<90°.
∵α=∠OBA+∠OBP,∠OBA=30°,
∴α<120°.
∴当60°<α<120°时,线段BA′与
只有一个公共点B.
综上所述:线段BA′与优弧
只有一个公共点B时,α的取值范围是0°<α<30°或60°≤α<120°.
![]()
![]()
![]()
![]()