题目内容
先化简,再求值:(x﹣2+)÷,其中x=(π﹣2015)0﹣+()﹣1.
解:原式=
=
=1﹣2+3=2,
当x=2时,原式=.
已知点A(-2,n)在抛物线y=x2+bx+c上.
(1)若b=1,c=3,求n的值;
(2)若此抛物线经过点B(4,n),且二次函数y=x2+bx+c的最小值是-4,请画出点
P(x-1,x2+bx+c)的纵坐标随横坐标变化的图象,并说明理由.
将正方形纸片以适当的方式折叠一次,沿折痕剪开后得到两块小纸片,用这两块小纸片拼接成一个新的多边形(不重叠、无缝隙),给出以下结论:
①可以拼成等腰直角三角形;
②可以拼成对角互补的四边形;
③可以拼成五边形;
④可以拼成六边形.
其中所有正确结论的序号是 .
在一个不透明的口袋中,装有若干个红球和4个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是0.2,则估计盒子中大约有红球( )
A. 16个 B. 20个 C. 25个 D. 30个
从﹣1、、1这三个数中任取两个不同的数作为点A的坐标,则点A在第二象限的概率是 .
某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:
x(件) … 5 10 15 20 …
y(元/件) … 75 70 65 60 …
(1)由题意知商品的最低销售单价是 50 元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;
(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?
如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是( )
A. 20° B. 35° C. 40° D. 70°
一个有进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量有两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示.
(1)当4≤x≤12时,求y关于x的函数解析式;
(2)直接写出每分进水,出水各多少升.
由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是 个.