题目内容

7.在△ABC中,D,E分别是AC,AB边上的点,AD=3,AE=2,AC=5,当AB=7.5或$\frac{10}{3}$时,△ADE与△ABC相似.

分析 根据题意画出图形,再分△ADE∽△ACB与△ADE∽△ABC两种情况进行讨论即可.

解答 解:如图,∵AD=3,AE=2,AC=5,
∴当△ADE∽△ACB时,$\frac{AD}{AC}$=$\frac{AE}{AB}$,即$\frac{3}{5}$=$\frac{2}{AB}$,解得AB=$\frac{10}{3}$;
当△ADE∽△ABC时,$\frac{AD}{AB}$=$\frac{AE}{AC}$,即$\frac{3}{AB}$=$\frac{2}{5}$,解得AB=7.5.
综上所述,当AB为7.5或$\frac{10}{3}$时,△ADE与△ABC相似.
故答案为:7.5或$\frac{10}{3}$.

点评 本题考查的是相似三角形的判定,在解答此题时要注意进行分类讨论,不要漏解.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网