题目内容
【题目】如图,已知
是三角形纸片
的高,将纸片沿直线
折叠,使点
与点
重合,给出下列判断:
![]()
①
是
的中位线;
②
的周长等于
周长的一半:
③若四边形
是菱形,则
;
④若
是直角,则四边形
是矩形.
其中正确的是( )
A.①②③B.①②④C.②④D.①③④
【答案】A
【解析】
根据折叠可得EF是AD的垂直平分线,再加上条件AD是三角形纸片ABC的高可以证明EF∥BC,进而可得△AEF∽△ABC,从而得
,进而得到EF是△ABC的中位线;再根据三角形的中位线定理可判断出△AEF的周长是△ABC的一半,进而得到△DEF的周长等于△ABC周长的一半;根据三角形中位线定理可得AE=
AB,AF=
AC,若四边形AEDF是菱形则AE=AF,即可得到AB=AC.
![]()
解:∵AD是△ABC的高,
∴AD⊥BC,
∴∠ADC=90°,
根据折叠可得:EF是AD的垂直平分线,
∴AO=DO=
AD,AD⊥EF,
∴∠AOF=90°,
∴∠AOF=∠ADC=90°,
∴EF∥BC,
∴△AEF∽△ABC,
,
∴EF是△ABC的中位线,
故①正确;
∵EF是△ABC的中位线,
∴△AEF的周长是△ABC的一半,
根据折叠可得△AEF≌△DEF,
∴△DEF的周长等于△ABC周长的一半,
故②正确;
∵EF是△ABC的中位线,
∴AE=
AB,AF=
AC,
若四边形AEDF是菱形,
则AE=AF,
∴AB=AC,
故③正确;
根据折叠只能证明∠BAC=∠EDF=90°,
不能确定∠AED和∠AFD的度数,故④错误;
故选:A.
【题目】暑假降至,丹尼斯大卖场为回馈新老顾客,进行有奖促销活动活动. 活动规定:购买500元的商品就可以获得一次转转盘的机会(转盘分为5个区域,分别是特等奖、一等奖、二等奖、三等奖、不获奖),转盘指针停在哪个获奖区域就可以得到该区域相应等级奖品一件(如果指针恰好停在分割线上,那么重转一次,直到指针指向某一区域为止). 大卖场工作人员在制作转盘时,将各扇形区域圆心角(不完全)分配如下表:
奖次 | 特等奖 | 一等奖 | 二等奖 | 三等奖 | 不获奖 |
圆心角 |
|
|
|
| _________ |
促销公告:凡购买我大卖场商品500元均有可能获得下列奖品:
特等奖:山地越野自行车一辆 一等奖:双肩背包一个
二等奖:洗衣液一桶 三等奖:抽纸一盒
根据以上信息,解答下列问题:
(1)求不获奖的扇形区域圆心角度数是多少?
(2)求获得双肩背包的概率是多少?
(3)甲顾客购物520元,求他获奖的概率是多少?