题目内容
【题目】如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“有趣三角形”,这条中线称为“有趣中线”。如图,在三角形ABC中,∠C=90°,较短的一条直角边BC=1,且三角形ABC是“有趣三角形”,求三角形ABC的“有趣中线”的长。
![]()
【答案】
.
【解析】
试题分析:“有趣中线”分三种情况,两个直角边跟斜边,而直角三角形的斜边的中点到三顶点距离相等,不符合;两个直角边,有一种情况有趣中线为1.但是不符合较短的一条直角边边长为1,只能为另一条直角边上的中线,利用勾股定理求出即可.
试题解析:“有趣中线”有三种情况:
若“有趣中线”为斜边AB上的中线,直角三角形的斜边的中点到三顶点距离相等,不合题意;
若“有趣中线”为BC边上的中线,根据斜边大于直角边,矛盾,不成立;
若“有趣中线”为另一直角边AC上的中线,如图所示,BC=1,
![]()
设BD=2x,则CD=x,
在Rt△CBD中,根据勾股定理得:BD2=BC2+CD2,即(2x)2=12+x2,
解得:x=
,
则△ABC的“有趣中线”的长等于
.
练习册系列答案
相关题目
【题目】李老师为了了解学生暑期在家的阅读情况,随机调查了20名学生某一天的阅读小时数,具体情况统计如下:
阅读时间 (小时) | 2 | 2.5 | 3 | 3.5 | 4 |
学生人数(名) | 1 | 2 | 8 | 6 | 3 |
则关于这20名学生阅读小时数的说法正确的是( )
A. 众数是8 B. 中位数是3 C. 平均数是3 D. 方差是0.34