题目内容
图①中是一座钢管混泥土系杆拱桥,桥的拱肋ACB可视为抛物线的一部分(如图②),桥面(视为水平的)与拱肋用垂直于桥面的系杆连接,测得拱肋的跨度AB为200米,与AB中点O相距20米处有一高度为48米的系杆.
(1)求正中间系杆OC的长度
(2)若相邻系杆之间的间距均为5米(不考虑系杆的粗细),则是否存在一根系杆的长度恰好是OC长度的一半?请说明理由。
已知于,于,,,,则在上是否存在点,使以、、为顶点的三角形与以、、为顶点的三角形相似?如果存在,求的长;如果不存在,说明理由.
把方程化为二次项系数为正数的一般形式后,它的常数项是( )
A. B. C. D.
已知a、b、c是三角形的三边长,化简:|a﹣b+c|+|a﹣b﹣c|=_____.
以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
如图是一座抛物线形拱桥,当水面的宽为12m时,拱顶离水面4m,当水面下降2m时,水面的宽为__________m.
已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是
A.x1=1,x2=-1 B.x1=1,x2=2
C.x1=1,x2=0 D.x1=1,x2=3
如图,已知第一象限内的点A在反比例函数的图象上,第二象限内的点B在反比例函数的图象上,且OA⊥OB ,,则 .
如图,已知在Rt△ABC中,∠ABC=90°,先把△ABC绕点B顺时针旋转90°后至△DBE,再把△ABC沿射线AB平移至△FEG,DE,FG相交于点H.
(1)判断线段DE,FG的位置关系,并说明理由;
(2)连接CG,求证:四边形CBEG是正方形.