题目内容

精英家教网如图,在平面直角坐标系xOy中,多边形OABCDE的顶点坐标分别是O(0,0),A(0,6),B(4,6),C(4,4),D(6,4),E(6,0).若直线l经过点M(2,3),且将多边形OABCDE分割成面积相等的两部分,则直线l的函数表达式是
 
分析:延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.把将多边形OABCDE分割两个矩形,过两个矩形的对角线的交点的直线把多边形OABCDE分割成面积相等的两部分.而M点正是矩形ABFO的中心,求得矩形CDEF的中心N的坐标,设y=kx+b,利用待定系数法求k,b即可.
解答:精英家教网解:如图,延长BC交x轴于点F;连接OB,AF;连接CE,DF,且相交于点N.
由已知得点M(2,3)是OB,AF的中点,即点M为矩形ABFO的中心,所以直线l把矩形ABFO分成面积相等的两部分.
又因为点N(5,2)是矩形CDEF的中心,所以,
过点N(5,2)的直线把矩形CDEF分成面积相等的两部分.
于是,直线MN即为所求的直线l.设直线l的函数表达式为y=kx+b,则
2k+b=3
5k+b=2

解得
k=-
1
3
b=
11
3
.
,故所求直线l的函数表达式为y=-
1
3
x+
11
3

故答案为y=-
1
3
x+
11
3
点评:本题考查了一次函数关系式为:y=kx+b(k≠0),要有两组对应量确定解析式,即得到k,b的二元一次方程组.同时考查了不规则图形面积的平分方法;过矩形对角线交点的直线必平分它的面积.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网