题目内容
二次函数y=2x2-4x+5通过配方化为顶点式为y=____,其对称轴是_____,顶点坐标为_____.
把多项式x4y﹣4xy3+2x2﹣xy﹣1按下列要求添括号:
(1)把四次项结合,放在带“+”号的括号里;
(2)把二次项相结合,放在带“﹣”号的括号里.
解方程:
.
方程3-4=-2x的二次项系数、一次项系数、常数项分别为( )
A.3,-4,-2 B.3,2,-4
C.3,-2,-4 D.2,-2,0
已知二次函数y=﹣x2+4x.
(1)写出二次函数y=﹣x2+4x图象的对称轴;
(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线);
(3)根据图象,写出当y<0时,x的取值范围.
如图,二次函数y=ax2+bx+c的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,2)与(0,3)之间(不包括这两点),对称轴为直线x=2.下列结论:abc<0;②9a+3b+c>0;③若点M(,y1),点N(,y2)是函数图象上的两点,则y1<y2;④﹣<a<﹣.其中正确结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
仙游度尾文旦柚,是莆田四大名果之一,获得“国家地理标志保护产品”。近年来,在政府的指导下,该地果农大力种植文旦柚,取得了较好的经济收入。某果园有130棵柚子树,每棵树结150个柚子,现准备多种一些柚子树以提高果园产量,但如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少,根据经验估计,每多种一棵树,平均每棵树就会少结1个柚子。假设果园多种了x棵柚子树.
(1)直接写出平均每棵树结的柚子个数n(个)与x之间的关系;
(2)果园多种多少棵柚子树时,可使柚子的总产量y最大?最大值为多少?
已知点P为抛物线y=x2+2x﹣3在第一象限内的一个动点,且P关于原点的对称点P′恰好也落在该抛物线上,则点P′的坐标为( )
A. (﹣1,﹣1) B. (﹣2,﹣) C. (﹣,﹣2﹣1) D. (﹣,﹣2)
抛物线y=x2﹣2x+1与坐标轴交点个数为( )
A. 无交点 B. 1个 C. 2个 D. 3个