题目内容
(1)求h、k的值;
(2)判断△ACD的形状,并说明理由;
(3)在线段AC上是否存在点M,使△AOM与△ABC相似?若存在,求出点M的坐标;若不存在,说明理由.
分析:(1)根据“左加右减,上加下减”的平移规律即可得到h、k的值;
(2)根据(1)题所得的抛物线的解析式,即可得到A、C、D的坐标,进而可求出AC、AD、CD的长,然后再判断△ACD的形状;
(3)易求得B点的坐标,即可得到AB、AC、OA的长;△AOM和△ABC中,已知的相等角是∠OAM=∠BAC,若两三角形相似,可考虑两种情况:
①∠AOM=∠ABC,此时OM∥BC,△AOM∽△ABC;②∠AOM=∠ACB,此时△AOM∽△ACB;
根据上述两种情况所得到的不同比例线段即可求出AM的长,进而可根据∠BAC的度数求出M点的横、纵坐标,即可得到M点的坐标.
(2)根据(1)题所得的抛物线的解析式,即可得到A、C、D的坐标,进而可求出AC、AD、CD的长,然后再判断△ACD的形状;
(3)易求得B点的坐标,即可得到AB、AC、OA的长;△AOM和△ABC中,已知的相等角是∠OAM=∠BAC,若两三角形相似,可考虑两种情况:
①∠AOM=∠ABC,此时OM∥BC,△AOM∽△ABC;②∠AOM=∠ACB,此时△AOM∽△ACB;
根据上述两种情况所得到的不同比例线段即可求出AM的长,进而可根据∠BAC的度数求出M点的横、纵坐标,即可得到M点的坐标.
解答:解:(1)∵y=x2的顶点坐标为(0,0),
∴y=(x-h)2+k的顶点坐标D(-1,-4),
∴h=-1,k=-4 (3分)
(2)由(1)得y=(x+1)2-4
当y=0时,
(x+1)2-4=0
x1=-3,x2=1
∴A(-3,0),B(1,0)(1分)
当x=0时,y=(x+1)2-4=(0+1)2-4=-3
∴C点坐标为(0,-3)
又∵顶点坐标D(-1,-4)(1分)
作出抛物线的对称轴x=-1交x轴于点E
作DF⊥y轴于点F
在Rt△AED中,AD2=22+42=20
在Rt△AOC中,AC2=32+32=18
在Rt△CFD中,CD2=12+12=2
∵AC2+CD2=AD2
∴△ACD是直角三角形;
(3)存在.由(2)知,OA=3,OC=3,则△AOC为等腰直角三角形,∠BAC=45°;
连接OM,过M点作MG⊥AB于点G,
AC=
=3
①若△AOM∽△ABC,则
=
,
即
=
,AM=
=
∵MG⊥AB
∴AG2+MG2=AM2
∴AG=MG=
=
=
OG=AO-AG=3-
=
∵M点在第三象限
∴M(-
,-
);
②若△AOM∽△ACB,则
=
,
即
=
,AM=
=2
∴AG=MG=
=
=2
OG=AO-AG=3-2=1
∵M点在第三象限
∴M(-1,-2).
综上①、②所述,存在点M使△AOM与△ABC相似,且这样的点有两个,其坐标分别为(-
,-
),(-1,-2).
∴y=(x-h)2+k的顶点坐标D(-1,-4),
∴h=-1,k=-4 (3分)
(2)由(1)得y=(x+1)2-4
当y=0时,
(x+1)2-4=0
x1=-3,x2=1
∴A(-3,0),B(1,0)(1分)
当x=0时,y=(x+1)2-4=(0+1)2-4=-3
∴C点坐标为(0,-3)
又∵顶点坐标D(-1,-4)(1分)
作出抛物线的对称轴x=-1交x轴于点E
作DF⊥y轴于点F
在Rt△AED中,AD2=22+42=20
在Rt△AOC中,AC2=32+32=18
在Rt△CFD中,CD2=12+12=2
∵AC2+CD2=AD2
∴△ACD是直角三角形;
(3)存在.由(2)知,OA=3,OC=3,则△AOC为等腰直角三角形,∠BAC=45°;
连接OM,过M点作MG⊥AB于点G,
AC=
| 18 |
| 2 |
①若△AOM∽△ABC,则
| AO |
| AB |
| AM |
| AC |
即
| 3 |
| 4 |
| AM | ||
3
|
3×3
| ||
| 4 |
9
| ||
| 4 |
∵MG⊥AB
∴AG2+MG2=AM2
∴AG=MG=
|
|
| 9 |
| 4 |
OG=AO-AG=3-
| 9 |
| 4 |
| 3 |
| 4 |
∵M点在第三象限
∴M(-
| 3 |
| 4 |
| 9 |
| 4 |
②若△AOM∽△ACB,则
| AO |
| AC |
| AM |
| AB |
即
| 3 | ||
3
|
| AM |
| 4 |
| 3×4 | ||
3
|
| 2 |
∴AG=MG=
|
|
OG=AO-AG=3-2=1
∵M点在第三象限
∴M(-1,-2).
综上①、②所述,存在点M使△AOM与△ABC相似,且这样的点有两个,其坐标分别为(-
| 3 |
| 4 |
| 9 |
| 4 |
点评:此题考查了二次函数图象的平移、直角三角形的判定、勾股定理以及相似三角形的判定和性质;需注意的是(3)题在不确定相似三角形的对应边和对应角的情况下要分类讨论,以免漏解.
练习册系列答案
相关题目