题目内容
(2015•响水县一模)一名射击爱好者5次射击的中靶环数如下:6,7,9,8,9,这5个数据的中位数是 .
(2015秋•保定期末)某商品专营店购进一批进价为16元/件的商品,销售一段时间后,为了获得更多利润,商店决定提高销售价格,经试验发现,若每件按20元的价格销售时,每月能卖360件;若每件每涨1元,每天少卖10件;设销售价格为x(元/件)时,每天销售y(件),日总利润为W元.物价局规定:此类商品的售价不得低于进价,又不得高于进价的3倍销售,即16≤x≤48.
(利润=售价﹣进价,或总利润=单间利润×总销售件数)
(1)售价25元/件时,日销量 件,日总利润为 元;
(2)求y与x之间的关系式;
(3)求W与x之间的关系式,问销售价格为多少时,才能使每日获得最大利润?日最大利润是多少?
(4)商店为减少库存,在保证日利润3000元的前题条件下,商店该以多少元/件销售.
(2015秋•甘谷县期末)若tanα•tan35°=1,且α为锐角,则α= ;若sin2α+sin237°=1,则锐角α= .
(2011•安顺)一次数学活动课上,老师带领学生去测一条南北流向的河宽,如图所示,某学生在河东岸点A处观测到河对岸水边有一点C,测得C在A北偏西31°的方向上,沿河岸向北前行40米到达B处,测得C在B北偏西45°的方向上,请你根据以上数据,求这条河的宽度.(参考数值:tan31°≈)
(2015秋•顺义区期末)计算:cos60°+tan30°•sin60°﹣(cos45°﹣)0.
(2015秋•顺义区期末)如图,在平行四边形ABCD中,点E在AD上,连接CE并延长与BA的延长线交于点F,若AE=2ED,则的值是( )
A. B. C. D.
(2015秋•黄山期末)如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,求抛物线经过A(1,0),C(0,3)两点,与x轴交于A、B两点.
(1)若直线y=mx+n经过B、C两点,求直线BC和抛物线的解析式;
(2)在该抛物线的对称轴x=﹣1上找一点M,使点M到点A的距离与到点C的距离之和最小,求出点M的坐标;
(3)设点P为该抛物线的对称轴x=﹣1上的一个动点,求使△BPC为直角三角形的点P的坐标.(提示:若平面直角坐标系内两点P(x1,y1)、Q(x2,y2),则线段PQ的长度PQ=).
(2015•湖州)若一个圆锥的侧面展开图是半径为18cm,圆心角为240°的扇形,则这个圆锥的底面半径长是( )
A.6cm B.9cm C.12cm D.18cm
(2015秋•官渡区期末)一个多边形的每一个内角都是120°,则这个多边形是 边形.