题目内容
已知x,y,z满足|x-2-z|+(3x-6y-7)2+|3y+3z-4|=0.求x,y,z的值.
解:根据非负数的性质,得
①×3+③,得3x+3y-10=0④
④-③,得y=
,
把y=
代入④得x=3,
把x=3代入①得z=1.
∴原方程的解为
.
故x=3,y=
,z=1.
分析:已知等式为三个非负数的和为0的形式,只有这几个非负数都为0,可组成方程组,求x、y、z的值.
点评:本题是方程组的运用,根据已知等式的特点,结合非负数的性质,组成方程组求解.
①×3+③,得3x+3y-10=0④
④-③,得y=
把y=
把x=3代入①得z=1.
∴原方程的解为
故x=3,y=
分析:已知等式为三个非负数的和为0的形式,只有这几个非负数都为0,可组成方程组,求x、y、z的值.
点评:本题是方程组的运用,根据已知等式的特点,结合非负数的性质,组成方程组求解.
练习册系列答案
相关题目