题目内容
若x-y=1,x3-y3=2,则x4+y4=
,x5-y5
.
| 23 |
| 9 |
| 23 |
| 9 |
| 29 |
| 9 |
| 29 |
| 9 |
分析:根据x3-y3=(x-y)(x2+xy+y2)=2,求出xy=
,x2+y2=
,再由x4+y4=(x2+y2)2-2x2y2,即可求值;
x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),将x-y=1,xy=
,x3-y3=2代入可求出值.
| 1 |
| 3 |
| 5 |
| 3 |
x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),将x-y=1,xy=
| 1 |
| 3 |
解答:解:∵x3-y3=(x-y)(x2+xy+y2)=2,
x-y=1,
x3-y3=(x-y)(x2+xy+y2)=2,
又∵x2-2xy+y2=1,与上式联立得:
xy=
,x2+y2=
,
故x4+y4=(x2+y2)2-2x2y2=
,
又x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),
将x-y=1,xy=
,x3-y3=2代入,
可得x5-y5=
,
故答案为
、
.
x-y=1,
x3-y3=(x-y)(x2+xy+y2)=2,
又∵x2-2xy+y2=1,与上式联立得:
xy=
| 1 |
| 3 |
| 5 |
| 3 |
故x4+y4=(x2+y2)2-2x2y2=
| 23 |
| 9 |
又x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),
将x-y=1,xy=
| 1 |
| 3 |
可得x5-y5=
| 29 |
| 9 |
故答案为
| 23 |
| 9 |
| 29 |
| 9 |
点评:本题主要考查立方公式的知识点,解答本题的关键是熟练掌握等式之间的转化,此题难度不大.
练习册系列答案
相关题目
下面四个判断(1)若x2=3,则x=
;(2)若x=-
,则x2=2;(3)若x3=3,则x=
;(4)若x=-
,则x3=2,其中正确的是( )
| 3 |
| 2 |
| 3 | 3 |
| 3 | 2 |
| A、(1),(3) |
| B、(2),(3) |
| C、(2),(4) |
| D、(1),(2),(3) |