题目内容

若x-y=1,x3-y3=2,则x4+y4=
23
9
23
9
,x5-y5
29
9
29
9
分析:根据x3-y3=(x-y)(x2+xy+y2)=2,求出xy=
1
3
,x2+y2=
5
3
,再由x4+y4=(x2+y22-2x2y2,即可求值;
x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),将x-y=1,xy=
1
3
,x3-y3=2代入可求出值.
解答:解:∵x3-y3=(x-y)(x2+xy+y2)=2,
x-y=1,
x3-y3=(x-y)(x2+xy+y2)=2,
又∵x2-2xy+y2=1,与上式联立得:
xy=
1
3
,x2+y2=
5
3

故x4+y4=(x2+y22-2x2y2=
23
9


又x5-y5=x5-x4y+x4y-xy4+xy4-y5=x4(x-y)+xy(x3-y3)+y4(x-y),
将x-y=1,xy=
1
3
,x3-y3=2代入,
可得x5-y5=
29
9

故答案为
23
9
29
9
点评:本题主要考查立方公式的知识点,解答本题的关键是熟练掌握等式之间的转化,此题难度不大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网