题目内容

如图:在△ABC中,∠ABC,∠ACB的平分线交于点O,若∠BOC=132°,则∠A等于多少度?若∠BOC=a°时,∠A又等于多少度呢?
考点:三角形内角和定理
专题:
分析:根据三角形内角和定理易得∠OBC+∠OCB=48°,利用角平分线定义可得∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,进而利用三角形内角和定理可得∠A度数.同理可得∠BOC=a°时∠A的度数.
解答:解:∵∠BOC=132°,
∴∠OBC+∠OCB=48°,
∵∠ABC与∠ACB的平分线相交于O点,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=96°,
∴∠A=180°-96°=84°.
同理,∵∠BOC=a°,
∴∠OBC+∠OCB=180°-α°.
∵∠ABC与∠ACB的平分线相交于O点,
∴∠ABC=2∠OBC,∠ACB=2∠OCB,
∴∠ABC+∠ACB=2(∠OBC+∠OCB)=2(180-α)°=360°-2α°,
∴∠A=180°-360°+2α°=2α°-180°.
点评:本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网