题目内容

如图,二次函数y=-
1
2
x2+c
的图象经过点D(-
3
9
2
)
,与x轴交于A、B两点.
精英家教网
(1)求c的值;
(2)如图①,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;
(3)设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使△AQP≌△ABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由.(图②供选用)
分析:(1)将D点坐标代入抛物线的解析式中,即可求出待定系数c的值;
(2)若△ACD与△ABC的面积相等,则两个三角形中,AC边上的高相等,设AC、BD的交点为E,若以CE为底,AC边上的高为高,可证得△CED和△CEB的面积相等;这两个三角形中,若以DE、BE为底,则两个三角形同高,那么DE=BE,由此可证得AC平分BD;
由于E是BD的中点,根据B、D的坐标,即可求出E点的坐标,根据A、E的坐标即可用待定系数法求出直线AC的解析式;
(3)设抛物线顶点为N(0,6),在Rt△AON中,易得AN=4
3
,于是以A点为圆心,AB=4
3
为半径作圆与抛物线在x轴上方一定有交点Q,连接AQ,再作∠QAB平分线AP交抛物线于P,连接BP,PQ,此时由“边角边”易得△AQP≌△ABP.
解答:精英家教网解:(1)∵抛物线经过D(-
3
9
2
),则有
-
1
2
×3+c=
9
2

解得c=6;

(2)设AC与BD的交点为E,过D作DM⊥AC于M,过B作BN⊥AC于N
∵S△ADC=S△ACB
1
2
AC•DM=
1
2
AC•BN,即DM=BN;
1
2
CE•DM=
1
2
CE•BN,
即S△CED=S△BEC(*);
设△BCD中,BD边上的高为h,由(*)得:
 
1
2
DE•h=
1
2
BE•h,即BE=DE,故AC平分BD;
易知:A(-2
3
,0),B(2
3
,0),D(-
3
9
2
),
由于E是BD的中点,则E(
3
2
9
4
);
设直线AC的解析式为y=kx+b,则有:
 
-2
3
k+b=0
3
2
k+b=
9
4

精英家教网解得
k=
3
3
10
b=
9
5

∴直线AC的解析式为y=
3
3
10
x+
9
5


(3)存在.
设抛物线顶点为N(0,6),在Rt△AON中,易得AN=4
3

于是以A点为圆心,AB=4
3
为半径作圆与抛物线在x轴上方一定有交点Q,连接AQ,
再作∠QAB平分线AP交抛物线于P,连接BP,PQ,
此时由“边角边”易得△AQP≌△ABP.
点评:此题主要考查了一次函数与二次函数解析式的确定、三角形面积的求法、以及全等三角形和直角三角形的判定和性质.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网