题目内容
已知:如图,□ABCD中,DE⊥AC于E,BF⊥AC于F.求证:DE=BF.
提示:可由△ADE≌△CBF推出.
已知:如图,△ABC中,∠C=90°,点O为△ABC的三条角平分线的交点,OD⊥BC,OE⊥AC,OF⊥AB,点D,E,F分别是垂足,且BC=8cm,CA=6cm,则点O到三边AB,AC和BC的距离分别等于______cm.
5题图
已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm.
某市要在一块□ABCD的空地上建造一个四边形花园,要求花园所占面积是□ABCD面积的一半,并且四边形花园的四个顶点作为出入口,要求分别在□ABCD的四条边上,请你设计两种方案:
方案(1):如图1所示,两个出入口E、F已确定,请在图1上画出符合要求的四边形花园,并简要说明画法;
图1
方案(2):如图2所示,一个出入口M已确定,请在图2上画出符合要求的梯形花园,并简要说明画法.
如图,在□ABCD中,DB=DC、∠A=65°,CE⊥BD于E,则∠BCE=______.
7题图
如图,在边长为4的正方形ABCD中,点P在AB上从A向B运动,连结DP交AC于点Q.
(1)试证明:无论点P运动到AB上何处时,都有△ADQ≌△ABQ;
(2)当点P在AB上运动到什么位置时,△ADQ的面积是正方形ABCD面积的;
(3)若点P从点A运动到点B,再继续在BC上运动到点C,在整个运动过程中,当点P运动到什么位置时,△ADQ恰为等腰三角形.
如图,□ABCD中,AB⊥AC,AB=1,BC=.对角线AC,BD相交于点O,将直线AC绕点O顺时针旋转,分别交BC,AD于点E,F.
(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;
(2)试说明在旋转过程中,线段AF与EC总保持相等;
(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不能,请说明理由;如果能,画出图形并写出此时AC绕点O顺时针旋转的度数.
三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.