题目内容
已知直线y=(k≠1),说明无论k取任何不等于1的实数,此直线都经过某一定点,并求出此定点的坐标.
在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示.点P(4,3)在图象上,则当力达到10N时,物体在力的方向上移动的距离是________m.
如图,在Rt△ABC中,∠C=90°,BD是△ABC的一条角平分线.点O、E、F分别在BD、BC、AC上,且四边形OECF是正方形.
(1)求证:点O在∠BAC的平分线上;
(2)若AC=5,BC=12,求OE的长.
在平面直角坐标系中,点A的坐标是(3a﹣5,a+1)
(1)若点A在y轴上,求a的值及点A的坐标.
(2)若点A到x轴的距离与到y轴的距离相等;求a的值及点A的坐标.
若y轴上的点M到x轴的距离为2.5,则点M的坐标为( )
A. (2.5,0) B. (0,-2.5) C. (0, 2.5) D. (0,2.5) 或(0,-2.5)
1号探测气球从海拔5 m处出发,以l m/min的速度上升.与此同时,2号探测气球从海拔15 m处出发,以0.5 m/min的速度上升,两个气球都匀速上升了50 min.设气球上升的时间为x(min)(0≤x≤50).
(1)根据题意,填写下表:
(2)在某时刻两个气球能否位于同一高度?如果能,这时气球上升了多长时间?位于什么高度?如果不能,请说明理由.
(3)当30≤x≤50时,两个气球所在位置的海拔最多相差多少米?
已知a,b,c为三个非负数,且满足3a+2b+c=5,2a+b-3c=1.
(1)求c的取值范围.
(2)设S=3a+b-7c,求S的最大值和最小值.
如图,AB是⊙O的直径,CD是⊙O的弦,∠CDB=40°,则∠CBA的度数为( )
A. 60° B. 50° C. 40° D. 30°
期中考试后,班里有两位同学议论他们所在小组同学的数学成绩,小明说:“我们组成绩是86分的同学最多”,小英说:“我们组的7位同学成绩排在最中间的恰好也是86分”.上面两位同学的话能反映出的统计量分别是( )
A. 众数和平均数 B. 平均数和中位数
C. 众数和方差 D. 众数和中位数