题目内容
用配方法解方程时,方程的两边同时加上________,使得方程左边配成一个完全平方式.
比较大小:-3_______0.(填“﹥”、“﹦”或“﹤”号)
已知二次函数的解析式为.
写这个二次函数图象的对称轴和顶点坐标,并求图象与轴的交点坐标;
在给定的坐标系中画出这个二次函数大致图象,并求出抛物线与坐标轴的交点所组成的三角形的面积.
如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
如图,在矩形中,,,点从点沿边向点以的速度移动;同时,点从点沿边向点以的速度移动,设运动的时间为秒,有一点到终点运动即停止.问:是否存在这样的时刻,使?若存在,请求出的值;若不存在,请说明理由.
已知关于的方程有两个不相等的实数根,则的取值范围是________.
一元二次方程有实数解,则的取值为( )
A. a≤0 B. a≥0 C. a=0 D. a<0
如图,在中,、分别是、上的点,,且,则的周长与的周长的比为________.
如图1,已知抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于C点,点P是抛物线上在第一象限内的一个动点,且点P的横坐标为t.
(1)求抛物线的表达式;
(2)设抛物线的对称轴为l,l与x轴的交点为D.在直线l上是否存在点M,使得四边形CDPM是平行四边形?若存在,求出点M的坐标;若不存在,请说明理由.
(3)如图2,连接BC,PB,PC,设△PBC的面积为S.
①求S关于t的函数表达式;
②求P点到直线BC的距离的最大值,并求出此时点P的坐标.