题目内容
化简:(1)(2a+b)2﹣(5a+b)(a﹣b)+2(a﹣b)(a+b)
(2)÷(﹣x﹣1)﹣.
若反比例函数在第一,三象限,则k的取值范围是 .
如图,已知在平面直角坐标系xOy中,二次函数y=﹣x2+mx+n的图象经过点A(3,0),B(m,m+1),且与y轴相交于点C.
(1)求这个二次函数的解析式并写出其图象顶点D的坐标;
(2)求∠CAD的正弦值;
(3)设点P在线段DC的延长线上,且∠PAO=∠CAD,求点P的坐标.
已知:3a=2b,那么= .
如图1,抛物线y=﹣x2﹣x+3与x轴交于A、B两点(点A在点B的右侧),交y轴于点C,点D的坐标为(0,﹣1),直线AD交抛物线于另一点E,点P是第二象限抛物线上的一点,作PQ∥y轴交直线AE于Q,作PG⊥AD于G,交x轴于点H
(1)求线段DE的长;
(2)设d=PQ﹣PH,当d的值最大时,在直线AD上找一点K,使PK+EK的值最小,求出点K的坐标和PK+EK的最小值;
(3)如图2,当d的值最大时,在x轴上取一点N,连接PN,QN,将△PNQ沿着PN翻折,点Q的对应点为Q′,在x轴上是否存在点N,使△AQQ′是等腰三角形?若存在,求出点N的坐标,若不存在,说明理由.
如图,△ABC内接于⊙O,BD为⊙O的直径,∠A=50°,∠ABC=60°,则∠ABD= .
如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分图形的面积为( )
A.4π B.2π C.π D.
抛物线y=x2+2x+c与y轴相交于点C,点O为坐标原点,点A是抛物线y=x2+2x+c与x轴的公共点,若OA=OC,则点A的坐标为 .
﹣2016的绝对值是( )
A. 2016 B. ﹣2016 C. D. ﹣