题目内容
下列四个实数中,绝对值最小的数是( )
A.-5 B.- C.1 D.4
如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.
(1)求证:CF为⊙O的切线;
(2)若⊙O的半径为 cm,弦BD的长为3 cm,求CF的长.
下列运算正确的是( )
A.2a+3b=5ab B.a2·a3=a5 C.(2a)3=6a3 D.a6+a3=a9
据调查,某市2012年商品房均价为7250元/m2,2013年同比增长了8.5%,在国家的宏观调控下,预计2015年商品房均价要下调到7200元/m2.问2014、2015两年平均每年降价的百分率是多少?若设两年平均每年降价的百分率为x%,则所列方程为: .
不等式组的解集在数轴上表示正确的是( )
(本题满分8分)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=6,则AC的长等于 .
如图,曲线抛物线的一部分,且表达式为:曲线与曲线关于直线对称。
(1)求A、B、C三点的坐标和曲线的表达式;
(2)过点D作轴交曲线于点D,连接AD,在曲线上有一点M,使得四边形ACDM为筝形(如果一个四边形的一条对角线被另一条对角线垂直平分,这样的四边形为筝形),请求出点M的横坐标。
(3)设直线CM与轴交于点N,试问在线段MN下方的曲线上是否存在一点P,使△PMN的面积最大?若存在,求出点P的坐标;若不存在,请说明理由。
如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,点H是AF的中点,那么CH的长是 .