题目内容
如图,在菱形ABCD中,∠A=60,E、F分别是AB、AD的中点,若EF=2,则菱形ABCD的边长是_______.
在反比例函数(<0)的图象上有两点,,则的值是( )
A.正数 B.非正数 C.负数 D.不能确定
已知一副直角三角板如图放置,其中BC=3,EF=4,把30°的三角板向右平移,使顶点B落在45°的三角板的斜边DF上,则两个三角板重叠部分(阴影部分)的面积为 .
如图所示,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.
(1)求证:BC是⊙O的切线;
(2)连接AF,BF,求∠ABF的度数;
(3)如果CD=15,BE=10,sinA=,求⊙O的半径
计算:
从左到右的变形,是因式分解的为 ( )
A.(3﹣x)(3+x)=9﹣x2
B.(a-b)(a2+ab+b2)=a3-b3
C.a2-4ab+4b2-1=a(a-4b)+(2b+1)(2b-1)
D.4x2-25y2=(2x+5y)(2x-5y)
(本题满分14分)
如图,已知抛物线过点A(6,0),B(-2,0),C(0,-3).
(1)求此抛物线的解析式;
(2)若点H是该抛物线第四象限的任意一点,求四边形OCHA的最大面积;
(3)若点Q在轴上,点G为该抛物线的顶点,且∠QGA=45,求点Q的坐标.
已知数轴上点A(表示整数a)在点B(表示整数b)的左侧,如果,且线段AB长为6,那么点A表示的数是( ).
A.3 B.6 C.-6 D.-3
图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.
(1)求证:OD⊥CE;
(2)若DF=1, DC=3,求AE的长.